Supporting information Fig. S1. Scanning electron microscopic images of primary particle of drug/LDH nanohybrid after reconstruction process (a) ML (\sim 225 \pm 14 nm), (b) FL (\sim 236 \pm 12 nm) and (c) MFL (\sim 234 \pm 14 nm) The lateral particle size of drug/LDH nanohybrid was investigated with the flattened particles. Randomly selected 10 particles from 3 different spots were utilized to obtain average and standard deviation. The lateral sizes of ML, FL and MFL were determined to be ~225±14 nm, ~236±12 nm and~234±14 nm, respectively. Compared to the lateral size of pristine LDH (~233±12) and calcined one (~236±13), those values are statistically considered same according to the student t-test with 95% confidentiality. Fig. S2 Time-dependent drug release pattern from ML, FL and MFL hybrids in deionized water (DW) and DMEM cell culture media for (a) MTX (b) 5-FU Time-dependent drug release pattern from ML, FL and MFL hybrids showed typical L-type curve. Drug release was more accelerated in DMEM compared with DW, which was attributed to the ion exchangeable electrolytes in DMEM media. Accumulated MTX release amounts at 6 h were ~ 70% and ~ 90% in DMEM from ML and MFL, respectively, suggesting that the incorporated drugs could be successfully release from the drug/LDH hybrids. 5-FU also showed accumulated release amounts of ~ 90% and ~ 50% in DMEM from FL and MFL hybrids, respectively, at 6 h. Interestingly, MTX release was more facilitated in MFL compared with ML; FL release was less in MFL than in FL. This might be attributed to the different location of MTX and 5-FU in MFL hybrids arising from different molecular dimension. The larger MTX molecules might be incorporated in the outer part of the hybrid, and thus the release was faster than 5-FU. As most of the drug moiety could be unloaded from the hybrids, the hybrids taken up by cancer cells could effectively transport drug molecules to intracellular system.